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Abstract

A new two-distribution lattice Boltzmann equation (LBE) algorithm is presented to solve the laminar diffusion flames
within the context of Burke–Schumann flame sheet model. One distribution models the transport of the Schvab–Zeldovich
coupling function, or the mixture fraction to combine the energy and species equations. The other distribution models the
quasi-incompressible Navier–Stokes equations with the low Mach number approximation. In the quasi-incompressible
flows, the thermodynamics quantities depend on the coupling function but not on the hydrodynamic pressure, and the fluid
components are assumed to be compressible only in the mixing/reaction region. A systematic and consistent approach to
deriving LBEs for the general advection–diffusion equation and the quasi-incompressible Navier–Stokes equations are also
presented. The streaming step of the LBEs are discretized by the total variation diminishing (TVD) Lax–Wendroff scheme.
Numerical simulations are carried out to reproduce the low frequency flame oscillation (or flame flicker) of buoyant jet
diffusion flame. Comparison between the quasi-incompressible model and the incompressible model is presented and
the role of non-solenoidal velocity is examined.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The lattice Boltzmann equation (LBE) method is based on microscopic models and mesoscopic kinetic
equations [1]. Even though the major focus is the averaged macroscopic behavior, its kinetic nature can pro-
vide many of the advantages of molecular dynamics, especially the near wall treatment at micro-fluid level [2],.
This implies that the LBE method could be a useful tool for understanding mesoscopic combustion phenom-
ena in complex geometries. However, research on LBE algorithms for combustion problems has been limited
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and started only recently. The principal difficulty could be attributed to the fact that the original LBE method
is valid in the incompressible limit and nearly constant density case. Severe density variation could violate
Galilean invariance of the LBE method.

The first lattice Boltzmann equation simulation of combustion problems was carried out by Succi et al.
[3] under the assumptions of fast chemistry and cold flames with weak heat release. As a result of the latter
assumption, density variation was not allowed in the model. Yamamoto et al. [4] presented a LBE method
for reaction, diffusion, and convection based on the incompressible LBE model of [5,6]. In addition to
incompressibility of the fluids, they assumed that the chemical reaction did not affect the flow field. There-
fore, density variation was allowed but not considered in the solution of the momentum equation. Filippova
and Hänel [7,8] proposed the LBE model for reacting flows at low Mach number, which allowed density
variation in the flow field due to temperature changes over a significant dynamical range of values. It con-
tained the modified lattice BGK [9] model for the solution of the continuity and momentum equations and
a finite-difference method for the transport equations of temperature and species. In [7,8], the LBE model
was derived by modifying the equilibrium distribution function such that the modified LBE could recover
the desired momentum equation without non-Galilean invariant terms. Time derivative of density was
added to the stationary particle distribution function in order to recover the continuity equation. From
the authors� experience, the time derivative of density triggers numerical instability, when the variation of den-
sity is not small.

In the present paper, a two-distribution LBE algorithm is presented to solve the unsteady Burke–Schumann
diffusion flame. One distribution models the transport of the Schvab–Zeldovich coupling function, or the mix-
ture fraction to combine the energy and species equations. The other distribution models the Navier–Stokes
equations. The major assumptions are negligible radiative heat transfer and viscous dissipation, low Mach
number, and laminar Newtonian flow. A flame-sheet model is used to calculate the thermodynamical proper-
ties of the flame [10]. The flame-sheet model assumes an infinitely large Damköhler number (i.e., fast chem-
istry), equal diffusion coefficients for all species, and a unity Lewis number for the mixture. A state
relationship between mixture fraction and properties such as density and temperature is also assumed.

The present derivation is based on the body force approach of He et al. [11] that was originally proposed to
model the discrete Boltzmann equation for non-ideal gases. Their LBE recovers the Navier–Stokes equations
for liquid–vapor two-phase flows. Later, more useful formulation was proposed by He et al. [12]. They trans-
formed the compressible LBE into the incompressible LBE by redefining a new particle distribution function
and removing terms related to the divergence of velocity. The transform is extended to derivation of the quasi-
incompressible flow in the present study. A systematic and consistent approach to deriving LBEs for transport
of the mixture fraction is also presented. Since the derivation is valid for any unsteady advection–diffusion
equation, it is equally applicable to finite-rate chemistry problems, although the current LBE is derived for
fast chemistry problems.

The paper is organized as follows. In Section 2, the macroscopic governing equations for the Burke–
Schumann diffusion flame with low Mach number approximation are presented. In Section 3, the DBEs
(discrete Boltzmann equations) for the transport of the mixture fraction and the momentum are derived
in a consistent manner. In Section 4, discretization of the DBEs is presented. We will show that the resulting
LBEs thus obtained are indeed second-order accurate. The monotonicity preserving TVD Lax–Wendroff
scheme is also described in Section 4. The proposed algorithm is tested for the Burke–Schumann diffusion
flame in Section 5. Numerical simulations are carried out to reproduce the flicker frequency of buoyant jet
diffusion flame. The quasi-incompressible solution is compared with the incompressible solution. Section 6 is
concluding remarks.

2. Macroscopic equations with low Mach number approximation

The mathematical formulation of the macroscopic governing equations is based on the time-dependent
variable density flow in two-dimensional Cartesian coordinate system. The major assumptions are negligible
radiative heat transfer and viscous dissipation, low Mach number, and laminar Newtonian flow. Based on
these assumptions, the numerical model is supposed to solve the transport equations for the conservation
of scalar (i.e., mixture fraction / in the study), mass, and momentum [10].
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Ideal gas equation of state
pðtÞ ¼ qRT ¼ pðtÞðtÞ; ð4Þ

where q and u are the density and velocity of the mixture, respectively. / is the mixture fraction which will be
defined later, l is the dynamic viscosity, p(t) the thermodynamic pressure, qgi the gravitational force, and D the
diffusion coefficient. R is the gas constant and T is the temperature.

The pressure-like variable P can be written as P ¼ pðhÞ þ 2
3
louk

oxk
dij, p(h) being the hydrodynamic pressure. For

low Mach number flow in an unconfined domain, the low Mach number approximation assumes that the

fluctuating pressure field, p(h)/p(t) � O(Ma2), where Ma is the Mach number, and that all thermodynamic
quantities are independent of p(h) [13]. This flow is referred to as the ‘‘quasi-incompressible’’ flow. In the
quasi-incompressible flow, the fluids components are assumed to be compressible only in the mixing region
[14]. In absence of temperature gradients, the Navier–Stokes equations in the low Mach number limit reduces
to the Navier–Stokes equations for the incompressible flow [8]. The linear deformation of the quasi-incom-
pressible fluids can be expressed in terms of diffusion of the mixture fraction rather than unsteady advection
of the density, because the density is no longer a function of the hydrodynamic pressure, but a function of the
mixture fraction.

A flame-sheet model is used to calculate the thermodynamical properties of the flame [10]. The flame-sheet
model assumes an infinitely large Damköhler number (i.e., fast chemistry), equal diffusion coefficients for all
species, and a unity Lewis number for the mixture. It is further assumed that the flame is adiabatic, and a
one-step irreversible chemical reaction occurs in an infinitely thin region with CO2 and H2O being the only
combustion products. With these assumptions, the Shvab–Zeldovich formulation [25] can be used; namely,
a single conserved scalar, or the mixture fraction, is used to combine the energy and species equations. The
mixture fraction is defined as
/ ¼
½b�m � ½b�O1
½b�F1 � ½b�O1

ð5Þ
or
/ ¼
½H �m � ½H �O1
½H �F1 � ½H �O1

; ð6Þ
where subscripts m, O1, and F1 denote the local mixture condition, the oxidant stream at x =1, and the fuel
stream at x =1, respectively. Parameters b and H are defined as
b ¼ Y F � ðF =OÞstY O; ð7Þ

where F/O denotes the fuel oxidant ratio, subscript st stands for the stoichiometric condition and Yi is the
mass fraction of species i,
H ¼ hþ
XN

i¼1

Y iDh0
f ;i; ð8Þ
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where h ¼
R T

T 0
cp dT and Dh0

f ;i is the thermal enthalpy and the standard state enthalpy of formulation of ith
species, respectively.

The divergence of the velocity can be obtained from the continuity equation, i.e.,
oui

oxi
¼ � 1

q
oq
ot
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oq
oxi

� �
. ð9Þ
The thermodynamic quantities such as the density and the temperature can be expressed as functions of the
mixture fraction / [26]. Employing the conserved scalar approach, one can evaluate the density variation as
follows:
oq
ot
¼ dq

d/
o/
ot

ð10Þ
and
oq
oxi
¼ dq

d/
o/
oxi

. ð11Þ
Substituting Eqs. (10) and (11) into Eq. (9), one obtains [27]
oui
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¼ � 1
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dq
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� �
ð12Þ
in which dq/d/ can be either analytically or numerically calculated. The role of the pressure-like variable is
now to satisfy Eq. (12). Hereafter, P will be called the pressure for simplicity.
3. Discrete Boltzmann equation for the laminar diffusion flame

3.1. Discrete Boltzmann equation with external body force

The Boltzmann equation with the BGK collision model can be written as [11]
of
ot
þ ni

of
oxi
þ F i

of
on
¼ � f � f eq

k
; ð13Þ
where f ” f(x,ni, t) is the particle distribution function in the phase space f ” f(x,ni), ni is the microscopic veloc-
ity, Fi is an external body force, k is the relaxation parameter due to collision, and feq is the Maxwell–
Boltzmann distribution function.
Since the derivative on f cannot be calculated directly, He et al. [11] take the leading part of the distribution
function and approximate the derivative as
of
on
� of eq

on
¼ � ni � ui

c2
s

f eq. ð14Þ
With this approximation, discretization of the microscopic velocity field n on unit lattice now yields the
discrete Boltzmann equation with discretized microscopic velocity ea (a = 0,1,2, . . . ,B)
Dfa

Dt
¼ ofa

ot
þ eai

ofa

oxi
¼ � fa � f eq

a

k
þ ðeai � uiÞF i

c2
s

f eq; ð15Þ
where B is the number of discretized velocity. The equilibrium distribution function is given as [28]
f eq
a ¼ taq 1þ eaiui

c2
s

þ
eaieaj � c2

s dij

� �
uiuj

2c4
s

� �
; ð16Þ
where ta is a weighting factor. The relaxation parameter is given as k ¼ l=qc2
s in which the mixture density q

and the mixture viscosity l are calculated from the mixture fraction /.
For Fi = qgi, where qgi is the gravitational force, the recovered macroscopic governing equations from

Eq. (15) are
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3.2. Discrete Boltzmann equation for momentum transport

In the conventional LBE method that is valid for the isothermal ideal gas flows, c2
s q ¼ pðtÞ. Since the ther-

modynamic pressure p(t) is assumed constant in the present case, c2
s q can no longer represent the pressure.

Thus, we consider an additional body force term ~F i which restores Eq. (18) to Eq. (3). An admissible choice
of ~F i might be ~F i ¼ oiðc2

s qÞ � oiP . Adding ~F i to Eq. (15) yields
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Eq. (19) recovers the continuity equation (2) and the momentum equation (3) through the Chapman–Enskog
expansion. Nevertheless, Eq. (19) cannot be used to obtain the pressure since zeroth moment of the particle
distribution function fa is the density, not the pressure. The density is to be obtained from the mixture fraction,
as will be discussed later. In order to transform Eq. (19) into the equation for the pressure and the velocity, we
follow the transform proposed by He et al. [12].

A new variable is introduced, whose zeroth moment is the pressure by design. We define a particle distri-
bution function ga as
ga ¼ c2
s fa þ P � c2

s q
� �

Cað0Þ; ð20Þ
where CaðuÞ ¼ f eq
a =q. By substituting ga into Eq. (19), the evolution equation for ga is obtained as:
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where the new equilibrium geq
a is
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The last two terms on the right-hand side (RHS) of Eq. (21) can be expanded through the continuity equation
as follows. We assume
DP
Dt
¼ oP

ot
þ eai

oP
oxi
� eaioiP ; ð23Þ
where otP becomes on the order of the truncation error in the low frequency limit [8]. Note that P is OðMa2Þ,
and thus the product of P and u will be OðMa3Þ. The total derivative of the density becomes
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Substitution of Eq. (12) into Eq. (24) yields
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There are a couple of differences between the present derivation and that in [12]. He et al. [12] set DtP

to zero in Eq. (21), because they assumed that P is a function of the density and the material derivative
of any function of the density is zero for incompressible fluids. Due to zero divergence, Eq. (24) reduces
to
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In Section 5, the LBE model based on Eq. (26) will be referred to as ‘‘incompressible model’’, while the LBE
model based on Eq. (24) as ‘‘quasi-incompressible model’’. They are different only in the mixing region.

Finally, Eqs. (23) and (24) are substituted into the DBE for ga, yielding
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The macroscopic variables are calculated by
P ¼
XB
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Eq. (27) recovers the macroscopic transport equations for the quasi-incompressible flow:
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In the low frequency limit, the time derivative of P becomes negligible and divergence of the velocity approx-
imately satisfies Eq. (12).

It is noteworthy that the LBE of Yamamoto et al. [4] recovers the following equation for the pressure:
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while the LBE of Filippova and Hänel [7,8] recovers
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which in terms of divergence of the velocity can be recast as
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Although Eq. (33) is generally valid for the compressible flow, stability concern arising from numerical treat-
ment of otq on the RHS is not trivial.

3.3. Discrete Boltzmann equation for scalar transport

There are several ways of choosing a distribution function for the mixture fraction, but here we choose
ha = /fa. This choice satisfies the following conditions of the equilibrium distribution for the mixture fraction
heq

a [29]:
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The equilibrium distribution is determined such that the above conditions are satisfied
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Taking the total derivative Dt of the new variable ha and utilizing Eq. (19) yield
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where uioiP � OðMa3Þ is neglected. The last term on the RHS can be expanded as
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As is assumed to approximate the external body force term in [11], fa in Eq. (37) is approximated by f eq
a .

Making use of Eq. (37) with this approximation leads to a DBE for the transport of the mixture
fraction:
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which recovers Eq. (1) through the Chapman–Enskog expansion.

4. Discretization of the discrete Boltzmann equations

4.1. Lattice Boltzmann equations

In order to numerically solve the DBEs, Eqs. (27) and (38), we discretize these equations along character-
istics over time step dt. The LBE for ga is obtained
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Note that the time integration in [t, t + dt] is coupled with the space integration in [x,x + eadt]. The Chapman–
Enskog analysis shows that the trapezoidal rule must be used for the integration in order not to introduce any
spurious derivatives of the second term into the system while retaining second-order accuracy [15]. Application
of the trapezoidal rule leads to
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where s = k/dt.
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Likewise, the LBE for ha is
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The above LBEs can be solved in three steps as shown in [19]. In the present study, however, we introduce new
variables to facilitate computations. If we define �ga and �ha such that
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Now, Eqs. (40) and (41) are solved in simpler two steps:
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þ sdt
sþ 0:5

eai � uið Þ oðq/Þ
oxi

þ q/
c2

s

gi

� �
CðuÞ � ea

/
c2

s

oP
oxi

CðuÞ þ o

oxi
qD

o/
oxi

� �
CðuÞ

� �
ðx;tÞ

. ð45Þ
Streaming step
�gaðxþ eadt; t þ dtÞ ¼ �gaðx; tÞ; ð46Þ
�haðxþ eadt; t þ dtÞ ¼ �haðx; tÞ. ð47Þ
The mixture fraction, the velocity, and the pressure are calculated below after the streaming step
q/ ¼
X

a

�ha þ
dt
2

o

oxi
qD

o/
oxi

� �
; ð48Þ

qc2
s ui ¼

X
a

ea�ga þ
c2

s dt
2

qgi; ð49Þ

P ¼
X

a

�ga þ
c2

s dt
2

ui
oq
oxi
� dt

2

c2
s

q
dq
d/

o

oxi
qD

o/
oxi

� �
. ð50Þ
The density is easily calculated from q/ by solving a quadratic equation (see Appendix A). However, obtaining
q/ using Eq. (48) requires implicit calculation. In this study, we explicitly take this value at the previous time
step. Accuracy and stability of the explicit treatment of source terms is analyzed in Appendix B.
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4.2. TVD Lax–Wendroff discretization

The Lagrangian description of the streaming step in the LBE given by Eqs. (46) and (47) can alternatively
be expressed in an Eulerian framework shown below [19].
o�ga

ot
þ eai

o�ga

oxi
¼ 0; ð51Þ

o�ha

ot
þ eai

o�ha

oxi
¼ 0. ð52Þ
The above streaming step can be solved by virtually any second-order accurate schemes suited for the pure
advection equation. On uniform structured mesh, spatial gradients in Eqs. (51) and (52) can be projected
along the characteristics to yield a system of one-dimensional pure advection equations. To improve the
accuracy associated with truncation error in the discretization of the advection equations, smaller time-
step and/or finer mesh resolutions are usually used. An alternative is to adopt a higher-order accurate
numerical scheme. Unfortunately, the higher-order accurate schemes (i.e., order higher than one) are also
known for the tendency to produce nonphysical dispersions or oscillations in the solution [10]. The numer-
ical diffusion and oscillation errors can artificially suppress or amplify the instabilities in an unsteady or
time-dependent flow; thus, it may overwhelm the physics of the fluid flow or the heat transfer being stud-
ied. Therefore, the robustness of a numerical model is of particular importance to the simulation of time-
dependent flow.

In general, the LBE method with consistent discretization yields second-order accurate solution in time and
space [1]. The perfect shift in the conventional LBE method, however, is only neutrally stable and numerical
disturbances may produce nonphysical oscillations in solution. The Lax–Wendroff scheme [16] has been
applied to the streaming step in place of the perfect shift [17–19] in an effort to stabilize the otherwise unstable
LBE method. In fact, the Lax–Wendroff LBE method is a natural extension of the conventional LBE method
in that the direct application of Taylor series expansion to the conventional LBE up to second-order leads to
the Lax–Wendroff formulation for space centered discretization [19]. Even though the Lax–Wendroff LBE
method usually works well for single-phase flows, it is not entirely free from the nonphysical oscillations espe-
cially for multi-phase or reactive flows in which spatial gradients of the thermodynamical quantities are gen-
erally large. The Warming and Beam scheme [20] improves stability and reduces the nonphysical oscillations
over the Lax–Wendroff scheme, but still is not enough for multi-phase/reactive flows, for which monotonicity
preserving [22] schemes are required.

The TVD LBE scheme, which is monotonicity preserving, has been proposed by Teng et al. [23]. They
applied the TVD space discretization directly to the discrete Boltzmann equation (DBE) and used the sec-
ond-order Runge–Kutta time marching method. The source terms including the collision term and the body
force terms are treated explicitly, which restricts the applicability of the scheme at high Reynolds number (Re)
[19]. We propose to use a simpler TVD discretization based on the Lax–Wendroff scheme [24] (or Warming
and Beam scheme). The TVD Lax–Wendroff scheme is applied to discretize the streaming step, which reduces
to the Lax–Wendroff scheme in the region of smooth solutions and selectively becomes the Warming and
Beam scheme depending on relative ratio of adjacent gradients. Overall accuracy of the scheme is second-
order.

In the following sections, second-order accurate advection schemes are introduced and applied to the
advection of the particle distribution functions.
4.2.1. Second-order space-centered and upwind schemes

There are two unique second-order accurate explicit schemes in both time and space on the support of three
grid points in one-dimension [22].

4.2.1.1. Lax–Wendroff scheme. The one-dimensional Lax–Wendroff scheme [16] along the characteristics is
the unique second-order space-centered discretization on the three-point support (x + eadt0,x,x � eadt0),
dt0 being unit time step such that eadt0 is the exact grid spacing along characteristics. It can be written as
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�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �
dt
2

�gaðxþ eadt0; tÞ � �gaðx� eadt0; tÞ½ �

þ dt2

2
�gaðxþ eadt0; tÞ � 2�gaðx; tÞ þ �gaðx� eadt0; tÞ½ �. ð53Þ
Eq. (53) can also be rewritten as a correction to the first-order upwind scheme
�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �dt �gaðx; tÞ � �gaðx� eadt0; tÞ½ � � dt
2
ð1� dtÞd� �gaðxþ eadt0; tÞ � �gaðx; tÞ½ �; ð54Þ
where d� of any variable w is defined as d�w(x,t) = w(x, t) � w(x�eadt0, t).

4.2.1.2. Warming and Beam scheme. The one-dimensional Warming and Beam scheme [20] along characteris-
tics is the unique second-order upwind discretization on the three-point support (x,x�eadt0,x � 2eadt0) and
can be written as
�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �
dt
2

3�gaðx; tÞ � 4�gaðx� eadt0; tÞ þ �gaðx� 2eadt0; tÞ½ �

þ dt2

2
�gaðx; tÞ � 2�gaðx� eadt0; tÞ þ �gaðx� 2eadt0; tÞ½ �. ð55Þ
Again Eq. (55) can be rewritten as a correction to the first-order upwind scheme
�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �dt �gaðx; tÞ � �gaðx� eadt0; tÞ½ � � dt
2
ð1� dtÞd� �gaðx; tÞ � �gaðx� eadt0; tÞ½ �. ð56Þ
In the case of unit time step, i.e., dt = dt0 = 1, both the Lax–Wendroff scheme and the Warming and Beam
scheme reduce to the perfect shift commonly used in the conventional LBE method. Any linear second-order
accurate explicit scheme on the support (x + eadt0,x,x � eadt0,x � 2eadt0) can be obtained as a linear combi-
nation of the Lax–Wendroff and the Warming and Beam scheme.

4.2.2. Second-order TVD schemes
Second-order space-centered and upwind schemes described above are not monotonicity preserving

schemes. A monotonicity preserving scheme can be obtained by limiting gradients in the Lax–Wendroff or
Warming and Beam schemes.

4.2.2.1. TVD Lax–Wendroff scheme. A limited form of the Lax–Wendroff scheme [24] is given by
�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �dt �gaðx; tÞ � �gaðx� eadt0; tÞ½ �

� dt
2
ð1� dtÞd� W r�ðxþ 1

2
eadt0; tÞ

� �
�gaðxþ eadt0; tÞ � �gaðx; tÞð Þ

� �
ð57Þ
in which the ratio r� is defined as
r�ðxþ 1

2
eadt0; tÞ ¼

�gaðx; tÞ � �gaðx� eadt0; tÞ
�gaðxþ eadt0; tÞ � �gaðx; tÞ

ð58Þ
and W is a non-linear limiting function, or a limiter, which will be defined later.

4.2.2.2. TVD Warming and Beam scheme. The TVD Warming and Beam scheme can be written as
�gaðx; t þ dtÞ � �gaðx; tÞ ¼ �dt �gaðx; tÞ � �gaðx� eadt0; tÞ½ �

� dt
2
ð1� dtÞd� W rþ x� 1

2
eadt0; t

� �� �
�gaðx; tÞ � �gaðx� eadt0; tÞð Þ

� �
; ð59Þ
where the ratio r+ is defined as
rþ x� 1

2
eadt0; t

� �
¼ �gaðxþ eadt0; tÞ � �gaðx; tÞ

�gaðx; tÞ � �gaðx� eadt0; tÞ
. ð60Þ
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The TVD Lax–Wendroff scheme reduces to the Lax–Wendroff scheme when W = 1, and the Warming and
Beam scheme when when W = r. The TVD Warming and Beam scheme behaves in the opposite way. Both
the TVD Lax–Wendroff scheme and the TVD Warming and Beam scheme are on the support
(x + eadt0,x,x � eadt0,x � 2eadt0). The limiter W(r±) used in the present study is the Van Leer limiter [21]:
Wðr�Þ ¼ r� þ jr�j
1þ jr�j . ð61Þ
Basically, the TVD Lax–Wendroff scheme is identical to the TVD Warming and Beam scheme.

4.3. Discretization of body force terms

On uniform structured mesh, it is advantageous to make full use of discretization in the direction of char-
acteristics. The directional derivative of the gradient of any variable, for instance, w in the ea direction is
discretized as
Fig. 1. Schematic representation of the computational domain and boundary conditions (not to scale).



Fig. 2.
denote
from R
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dt0ea � rw ¼ wðxþ eadt0Þ � wðx� eadt0Þ
2

ð62Þ
in which the second-order accurate central difference is projected along characteristics. Derivatives other than
the directional derivatives can be obtained by taking moments of the 1-D second-order central discretization
of the first and second derivatives along characteristics for consistency, although its effect on stability is not
critical. Specifically, the first derivative and the second derivative are discretized as follows [31] (see Appen-
dixes A and B):
rw ¼
X
a6¼0

taea � î w xþ eadt0ð Þ � wðx� eadt0Þ½ �
2c2

s dt0

; ð63Þ

r � rw ¼
X
a 6¼0

ta w xþ eadt0ð Þ � 2wðxÞ þ wðx� eadt0Þ½ �
c2

s dt2
0

; ð64Þ
in which î is the unit vector pointing along the i-coordinate axis. Eq. (63) appears in LBE as in the inner prod-
uct with the velocity vector, which is OðMaÞ. Thus, its contribution to the overall truncation error is smaller
than the directional derivatives. Eq. (64) requires modification in order to be used for discretization of the
diffusion term:
r � ðqDr/Þ ¼
X

a

ta qDðxþ1=2eadt0Þð/ðxþ eadt0Þ � /ðxÞÞ � qDðx�1=2eadt0Þð/ðxÞ � /ðx� eadt0ÞÞ
� 	

c2
s

. ð65Þ
5. Numerical test

The numerical model is tested with the simulation of a ducted slot jet diffusion flame of Burke–Schumann
[32]. The exothermic reaction of combustion yields high temperature combustion products typically around
2300 K for hydrocarbon fuels burning in air. Density variation of order of 10 can exist in the flame. Numerical
Comparison of steady flame heights at various Re in logarithmic scale. Triangles denote LBE results with 125 · 500 grid, squares
LBE results with 250 · 1000 grid, and circles denote LBE results with 500 · 2000 grid. Both theoretical and experimental results are
oper [33].
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simulations are carried out to reproduce the flicker frequency of buoyant jet diffusion flame. Here we intro-
duce the following non-dimensional variables:
Fig. 3.
stages
�x ¼ x
L0

; �u ¼ u
c0

; �t ¼ t
L0=c0

; �m ¼ m
c0L0

; ð66Þ
where L0 and c0 are the characteristic length and velocity, and defined as L0 = dx0 and c0 = dx0/dt0, respec-
tively. Variables with overbar are non-dimensional variables whereas variables without overbar are variables
with physical dimensions.

Three systematically refined grids are used to investigate grid effect. The computational domain covers a
region of �x 2 ½0; 125� in the x direction and �y 2 ½0; 500� in the y direction in coarse grid calculations,
�x 2 ½0; 250� and �y 2 ½0; 1000� in medium grid calculations, and �x 2 ½0; 500� and �y 2 ½0; 2000� in fine grid calcu-
lations. The corresponding burner widths are �W ¼ 10, �W ¼ 20, and �W ¼ 40. They are located at ð�x; �yÞ ¼ ð0; 0Þ
and fuelled by 50% methane and 50% nitrogen by volume. The fuel and co-flowing air are separated by infi-
nitely thin walls at the inflow. The schematic representation of the domain and boundaries is shown in Fig. 1.
The computation uses a symmetric boundary condition for the centerline, and a bounce-back scheme to emu-
late no-slip and impermeable wall for the outer boundary. Equilibrium boundary conditions are imposed at
the inflow and outflow nodes and prescribed macroscopic values for the inflow condition and zero normal gra-
dients for the outflow boundary are utilized in order to evaluate the equilibrium. Still air is assumed to be the
initial condition for the computational domain and the flame is located at the jet inlet. Physical width of the
slot is then W = 2 mm and the outer walls are located at x = �250 mm and x = 250 mm, and physical height
of the computational domain is H = 1000 mm. The velocity of the fuel stream ranges from 0.2 to 0.4 m/s with
corresponding Re from 25.18 to 50.35. Re is based on the velocity of the fuel jet and the width of the slot. At
this range of Re, the flame dynamics is dominated by the buoyant effects.
Temperature contours of quasi-incompressible jet flame at different times: (a) initial stages right after ignition at the jet exit, (b) later
at quasi-steady state.
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To validate the present LBE model, calculated steady flame heights are compared with the theoretical
results of Roper [33] in an infinitely long ducted slot geometry. We choose D1 = m = 1.589 · 10�5 m2/s,
a = 0.6g(Tf/T1�1), Tf = 2182.8 K, and T1 = 298 K in Roper�s correlations for the buoyancy-controlled slot
burner. Since the diffusion flame model considered is inherently oscillatory and does not reach steady-state,
the numerical formulation needs to be modified to yield steady-state solutions. Instead of using Eq. (25),
we assume that the time derivative of density disappears at steady-state:
Fig. 4.
stages
oq
ot
þ eai

oq
oxi
� eai

oq
oxi

. ð67Þ
This formulation is not generally valid, but very useful to calculate the steady flame height. The velocity of the
co-flow air stream is 10% of the velocity of the fuel stream to mimic the assumptions used by Roper. Fig. 2
compares the steady flame heights calculated by the steady LBE model with the experimental and theoretical
flame heights for buoyancy driven flames. The medium grid calculations are in good agreement with the fine
grid calculations. Both calculations fall between the experimental and theoretical flame heights, although they
favor the theoretical predictions. The slope of 4/3 is confirmed for the medium and fine grid calculations, but
the results from the coarse grid calculations deviate from the slope as Re increases. For these reasons, the med-
ium grid will be used in the following calculations.

In unsteady jet diffusion flames, three effects can arrive from density variation, e.g., thermal or volumetric
expansion, buoyancy effects and vorticity generation [27]. The first two effects are evident as one examines the
continuity and momentum equations. The non-solenoidal velocity field ($ Æ u) complicates the analysis since
the incompressible fluid assumption can no longer hold. The buoyancy forces appear in the momentum equa-
Temperature contours of incompressible jet flame at different times: (a) initial stages right after ignition at the jet exit, (b) later
at quasi-steady state.
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tion as a source term which accelerates the flow resulting in dynamic changes in the flame structure of vertical
jet diffusion flames. The dynamic change can also be seen from a Kelvin–Helmholtz type instability which is
attributed to buoyancy induced shear layer around the flame and periodically occurring vortices outside the
luminous flame. These vortices are buoyancy driven as shown from the numerical simulation in which outer
vortices are suppressed as the gravitational acceleration is artificially set to zero. The suppression of the outer
vortices yields a steady flame without the low frequency oscillation (or flame flicker) typically observed in
buoyant jet diffusion flames. The flicker frequency observed in non-premixed and partially premixed flames
is typically in the range of 10–20 Hz (see [35] and references therein). Buckmaster [34] measured frequencies
for methane burning in air and reported that for a 2 mm circular nozzle there was a monotonic increase from
12 to 14 Hz as the mean burner exit speed was increased from 1 to 9 m/s. Sato et al. [36] found the flickering
frequencies near 13 Hz for a 2 mm circular nozzle. They used C3H8 as fuel and varied flame heights and jet exit
velocities. Generally, the frequency is relatively independent of the fuel type, nozzle size, and jet exit velocity.

Fig. 3 shows the temperature contours of the jet diffusion flame in the initial developmental stages and
quasi-steady stages by the quasi-incompressible model at Re = 50.35 and the co-flow air stream set to the same
velocity as the fuel stream. For a short time after ignition at the jet inlet (Fig. 3(a)), the flame exhibits a typical
Rayleigh–Taylor type instability. Mushroom-shaped vortices induced by the Rayleigh–Taylor instability will
soon be swept away. At later times, a Kelvin–Helmholtz type instability due to buoyancy induced shear layer
around the flame appears and regularly occurring vortices outside the flame are observed (Fig. 3(b)). In Fig. 4,
the result by the incompressible model is also presented. Generally, the flame height of the incompressible
model is much smaller than that of the quasi-incompressible model. The difference between these two models
originates from the term dq=d/r � ðqDr/Þ in Eq. (12).
Fig. 5. Flame location represented by / = /st of quasi-incompressible jet flame at different times: (a) initial stages right after ignition at the
jet exit, (b) later stages at quasi-steady state.
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The term dq/d/ in Eq. (12) is typically positive in the fuel rich regime inside the flame envelope (/st < /
< 1) and negative in the fuel lean regime outside the flame envelope (0 < / < /st). The volumetric expansion
term becomes [27]
Fig. 6.
exit, (b
SV ¼ �xðr � uÞ ¼ x
1

q2

dq
d/
r � ðqDr/Þ

� �
; ð68Þ
where x is the vorticity vector. Eq. (68) states that volumetric expansion can result in vorticity generation
when it has the same sign as the vorticity. An inflection point in mixture fraction exists for jet diffusion flames.
As a result, vorticity generation as well as destruction can result from volumetric expansion; in specific, S/
x < 0 in the fuel lean regime, S/x > 0 in the regime bounded by the stoichiometric contour and inflection-
point contour of the fuel rich regime, and S/x < 0 in the core regime.

The baroclinic effect can be evaluated following a similar approach. Assuming that the pressure gradient is
due to hydrostatic pressure alone, the baroclinicity can be expressed as
SB ¼ �r
1

q
xrP ¼ �rvxrP ¼ �rvxq1g; ð69Þ
where q1 is the ambient fluid density. Employing the conserved scalar approach, one obtains the following
expression for baroclinicity [27]:
SB ¼
q1
q2

dq
d/
r/xg. ð70Þ
Flame location represented by / = /st of incompressible jet flame at different times: (a) initial stages right after ignition at the jet
) later stages at quasi-steady state.



Fig. 7. Time trace of the flame height by the quasi-incompressible and the incompressible models at Re = 50.35.

Table 1
Flicker frequency (Hz)

Rea Quasi-incompressible model Incompressible model

25.18 18.18 11.46
37.16 19.37 12.68
50.35 19.05 20.83

a Based on the mean velocity of the fuel jet and the width of the slot.
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The sign of dq/d/ is related to the baroclinicity shown above. The baroclinicity is negative in the fuel rich
regime but positive in the fuel lean regime. As a result, the baroclinicity suppresses vorticity in the fuel rich
regime of a jet diffusion flame, yielding laminarization effects to the flow. The baroclinicity, however, can
generate vorticity in the fuel lean regime.

The flame location represented by / = /st is plotted in Fig. 5 for the quasi-incompressible model and in
Fig. 6 for the incompressible model. Mushroom-shaped Rayleigh–Taylor type instability is clearly observed
in Figs. 5(a) and 6(a). Figs. 5(b) and 6(b) roughly represent one period of flame flicker, during which time
flame cutting is observed. The time evolution of the flame heights of the quasi-incompressible model and that
of the incompressible model at Re = 50.35 is shown in Fig. 7. Sharp changes in the flame height are due to the
flame cutting. In the incompressible model, contribution of volumetric expansion and the baroclinic effect are
not reflected in the solution, which results in smaller flame height. Table 1 summarizes the flicker frequencies
for different Re and LBE models. The flicker frequency is approximately 18–19 Hz for the quasi-incompress-
ible model confirming the previous statement that the flicker frequency is relatively independent of the jet exit
velocity. Although all the computational results are within the range of experimental and computational data
[37], the incompressible model is unable to predict velocity independent flicker frequency. If gravity is set to
zero computationally, flickering ceases.

6. Concluding remarks

In the present paper, we propose a two-distribution lattice Boltzmann equation (LBE) algorithm for solving
the time-dependent and steady laminar diffusion flames within the context of the Burke–Schumann flame sheet
model. One distribution function models the transport of the Schvab–Zeldovich coupling function, or the mix-
ture fraction to combine the energy and species equations. Since the present derivation of the LBE is general
for any unsteady advection–diffusion equations, it is equally applicable to flame calculation with a finite rate
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chemistry model. The other distribution function models the quasi-incompressible Navier–Stokes equations.
In the quasi-incompressible flow, the density and the temperature depend on the mixture fraction but not
on the pressure, and the fluids components are assumed to be compressible only in the mixing region. An
incompressible model is obtained if the linear deformation of the fluids (e.g., $ Æ u) is neglected in the derivation
of the LBE.

The numerical model is tested with the simulation of a slot jet diffusion flame of Burke–Schumann. To
enhance the robustness of the LBE method while retaining second-order global accuracy, the TVD Lax–
Wendroff scheme is applied to the streaming step of the proposed LBE formulation. Right after ignition at
the jet inlet, the Rayleigh–Taylor type instability is observed, which is swept away by convection. At later
times, the Kelvin–Helmholtz type instability develops due to the presence of the buoyancy induced shear layer
around the flame. Numerical simulation successfully reproduces the flicker frequency of buoyant jet diffusion
flame. We also compare the quasi-incompressible model with the incompressible model. Vorticity generation
as well as destruction can result from the volumetric expansion. In the incompressible model, contribution of
volumetric expansion is not captured in the solution resulting in a much smaller flame height.

Future work might include flame simulation of finite rate chemistry. Two-distribution LBE algorithm can
still be used for the mass and momentum, and energy transport equations. The species transport equations
can be solved by either the LBE algorithm developed in Section 3.3 with the addition of source terms or the
conventional numerical approaches. Development of a monotonicity preserving LBE method on unstructured
meshes is urgent for practical applications. The multiple-relaxation-time model (for instance, see [38]) would
further stabilize the present single-relaxation-time model at the cost of slight increase in computation time
and memory.
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Appendix A

If we assume that the thermodynamic pressure p(t) is constant, the ideal gas EOS can be written for the mix-
ture density
q ¼ pðtÞMW m

RuT
¼ pðtÞ

RuT
P

iY i=MW i
; ðA:1Þ
where MWi is the molecular weight of species i and Ru the universal gas constant. Multiplying the mixture
fraction / to the above equation, it yields
q/ ¼ pðtÞ/
RuT

P
iY i=MW i

. ðA:2Þ
Given q/ from Eq. (48), the mixture fraction / can be calculated by solving a quadratic equation. For 0 6 q/
< qst/st,
q/ ¼ pðtÞ/

Ru
1

MW st

/
/st
þ 1

MW O1

/st�/
/st


 �
T st�T O1

/st
/þ T O1


 � ðA:3Þ
which can be solved for 0 6 / < /st. For qst/st < q/ 6 qO1
q/ ¼ pðtÞ/

Ru
1

MW st

1�/
1�/st
þ 1

MW F1

/�/st

1�/st


 �
T F1�T st

1�/st
ð/� 1Þ þ T F1


 � ðA:4Þ
which can be solved for /st < / 6 1.
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Appendix B

We consider a model advection equation for a scalar variable f with a source term Q.
of
ot
þ e � rf þ Q ¼ 0; ðB:1Þ
where e is the advection velocity. We expand the variable f by a Taylor series in time, retaining terms of the
second order, giving in the interval dt, and obtain
f nþ1 ¼ f n þ dt
of
ot

����
n

þ dt2

2

o2f
ot2

����
n

. ðB:2Þ
From Eq. (B.1), we can write
of
ot

� �
n

¼ � e � rf þ Q½ �n ðB:3Þ
and differentiate it to obtain
o2f
ot2

� �
n

¼ � o

ot
e � rf þ Q½ �n. ðB:4Þ
The above equations can also be written as
o

ot
ðe � rf Þ ¼ e � r of

ot

� �
¼ �e � r e � rf þ Qð Þ ðB:5Þ
and
oQ
ot
¼ oQ

of
of
ot
¼ �Sðe � rf þ QÞ ðB:6Þ
with S ” oQ/of.
We can therefore approximate Eq. (B.2) as
f nþ1 � f n ¼ dt e � rf þ Q½ �n þ
dt2

2
e � rðe � rf þ QÞ þ Sðe � rf þ QÞ½ �n þOðdt3Þ. ðB:7Þ
Omitting the effect of S [39], we have
f nþ1 � f n ¼ dt e � rf þ Q½ �n þ
dt2

2
e � r e � rf þ Q½ �n ðB:8Þ
which is second-order accurate in time and conditionally stable.
If f represents the particle distribution function fa, Eq. (B.8) can be projected along characteristics up to

second-order accuracy as follows [19]:
faðxþ edt; t þ dtÞ � faðx; tÞ ¼
dt
2
½Qðxþ edt; tÞ þ Qðx; tÞ� ðB:9Þ
while the Crank–Nicolson discretization of Eq. (B.1) along characteristics yields
faðxþ edt; t þ dtÞ � faðx; tÞ ¼
dt
2
½Qðxþ edt; t þ dtÞ þ Qðx; tÞ�. ðB:10Þ
Therefore, the explicit treatment of the source term in the LBE formulation can be still second-order accurate
if the source term is not directly dependent on the particle distribution function. However, unconditional
stability of the Crank–Nicolson discretization is lost. Note that the following explicit formulation is always
first-order accurate:
faðxþ edt; t þ dtÞ � faðx; tÞ ¼ dtQðx; tÞ. ðB:11Þ
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